中国学术文献网络出版总库

刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 双月
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号: 2-418

历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:核心期刊 CSSCI来源期刊来源期刊;国家新闻出版总署收录;Caj-cd规范获奖期刊;中国期刊网来源刊;百种重点期刊;社科双百期刊;全国优秀社科期刊
创刊时间:1989

关于数学核心素养的几个问题

【作者】 王 峰

【机构】 四川省南充市行知小学

【摘要】
【关键词】
【正文】  随着基础教育课程改革的不断深入,人们越来越关注学生素质的培养。就数学学科而言,更关注学生的数学素养的提高,特别是有关数学核心素养的问题更引起广泛的讨论。如何理解数学核心素养,数学核心素养与数学基本思想、数学思想方法等之间的关系如何,本文试对这些问题谈一谈自己的理解。
  一、对数学核心素养的理解
  数学核心素养是数学学习者在学习数学或学习数学某一个领域所应达成的综合性能力。数学核心素养是数学的教与学过程应当特别关注的基本素养。
  数学10个核心素养,即数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。数学核心素养可以理解为学生学习数学应当达成的有特定意义的综合性能力。核心素养不是指具体的知识与技能,也不是一般意义上的数学能力。核心素养基于数学知识技能,又高于具体的数学知识技能。核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、阶段性和持久性。数学核心素养与数学课程的目标和内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要的意义和价值。
  “数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的市民的需要而具备的认识,并理解数学在自然、社会生活中的地位和能力,作出数学判断的能力,以及参与数学活动的能力。”可见,数学素养是人们通过数学的学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。人们所遇到的问题可能是数学问题,也可能不是明显的和直接的数学问题,而具备数学素养的人可以从数学的角度看待问题,可以用数学的思维方法思考问题,可以用数学的方法解决问题。
  某些核心素养与单一的学习领域内容相关。在学习数的认识、数的运算、字母表示数等内容时与这些核心素养直接联系。数的认识的学习过程有利于形成学生的数感,数感的建立有助于学生对数的理解和把握。空间观念与“图形与几何”领域密切相关。学习图形的认识和图形的关系等内容应注重学生空间观念的发展。学生探索一个正方体有多少个面,怎样求易拉罐的表面积等内容时都需要空间观念的支撑。数据分析观念与“统计与概率”领域直接相关,数据的收集、整理、呈现和判断的整体过程是形成学生的数据分析观念的过程。
  有些核心素养与几个领域都有密切的关系,不直接指向某个单一的领域,包括几何直观、推理能力和模型思想。几何直观在学习图形与几何、数与代数等领域的内容时都会用到。在解决具体数学问题时,可以采用画图的方法帮助理解数与代数问题中的数量关系。推理能力在几个领域的学习中都会用到。推理在几何中经常运用,特别是初中阶段的平面几何的证明。在数与代数中也常常用到推理。在小学数学教学中归纳是常用的思维方式。演绎也会经常用到,最简单的在表述一些运算的算理时,其实用到了演绎推理的方法。
  “实践意识”与“创新意识”具有综合性、整体性,在“综合与实践”领域中有突出的表现,但不局限于这个方面的内容,应当是贯穿整个小学数学教育全过程。
  二、数学核心素养的特征
  按照上述对数学核心素养的理解,数学核心素养具有综合性、阶段性和持久性的特征。
  首先是综合性。综合性是指数学核心素养是数学基础知识、基本能力、数学思考和数学态度等的综合体现。数学基础知识和基本能力可以看作数学核心素养的外显表现。核心素养总是基于数学的基础知识和基本能力实现的,并且外化于运用基础知识和基本能力解决问题的过程。同时,数学核心素养也促进数学基础知识的深刻理解和数学基本能力的提升。
  其次是阶段性。阶段性是指学生的数学核心素养表现为不同层次水平、不同阶段。数学核心素养的水平和层次划分,是一个复杂的问题,不同的核心素养也有各自的特点。这将是一个值得深入研究的问题。
  最后是持久性。持久性是指数学核心素养的培养不仅有助于学生对数学知识的理解与把握,还是伴随学生进一步学习,以及将来走向生活和工作的历程。
  三、数学核心素养与相关概念的关系
  与数学核心素养有着密切关系的还有数学基本思想、数学思想方法等概念。按照上述对数学核心素养的理解,我们可以尝试分析这几个概念之间的关系。
  数学基本思想是数学科学本质特征的反映,是数学科学的基石。数学基本思想是研究数学科学不可缺少的思想,也是学习数学,理解和掌握数学所应追求和达成的目标。把抽象、推理和模型作为数学的基本思想与数学具有抽象性、严谨性和广泛的应用性的基本特征是一致的。抽象性就是抽象思想的体现,严谨性来自合乎逻辑的推理,广泛的应用性恰是通过建立数学模型使数学与现实中的问题建立联系,解决更广泛的实际问题。对于数学教育而言,了解数学科学发展所依赖的数学基本思想是必要的,也是最基本的目标。这体现了对数学学科的基本理解与把握,及对数学这门学科基本的思维方式的理解。
  数学的思想方法是学习数学,特别是解决数学问题所运用的方法。在数学学习和解决数学问题过程中,人们形成了一些重要的数学思想方法,如转换的思想方法、数形结合的思想方法、等量替换的思想方法、特殊化的方法、穷举的方法等。在小学数学教育中,经常运用这些思想方法解决一类数学问题。
  从上述的理解中,可以尝试分析这三个概念之间的关系。数学基本思想是统领整个数学和数学教育的思想,对于研究数学和学习数学的人都有重要指导意义。同样,数学基本思想对数学核心素养也是上位的具有指导性的。或者可以理解数学核心素养是数学基本思想在学习某一个或几个领域内容中的具体表现。数学思想方法则是体现如何从操作层面上实现数学核心素养和体现数学基本思想的方法或能力。